
NASA-CR-190629

Object Linking in Repositories
............ yd l/Idw°_J _.

- f.j

David Eichmann, ed.
West Virginia Un_sity Research Corporation

:_611192

w

w

I

co

m.i

en r0
I _--

N U
0_ C
Z

Z
l.-4

oOE
z_- _

0 vl

-J C
C

_- 0

wU_
-_ L rO
_mE
C3_L

0

r_j

.0 "0
Ou_
o, uJ rO

I o_ _
t_iD C

I _4u
<£ u_ :3

: Zw Or_

_ _.

_O
0_
O

0

o3

rf3

Cooperative Agreement NCC 9-16

RasearchActivity No. SE.43

NASA Johnson Space Center
Informa__ems Directorate

Information_=Technology Division

©

L

- Re_rch Institute for Computing and Information Systems

--_-_- _ _:: University of Houston-Clear Lake
--

TECHNICAL REPORT

,L %

The RICIS Concept

II|

The University of Houston-Clear Lake established the Research Institute for

Computing and Information Systems (RICIS) in 1986 to encouragethe NASA

Johnson Space Center (dSC) and local Industry to actively support research

In the computing and information sciences. As part of this endeavor, UHCL

proposed a partnership with JSC to Jointly define and manage an integrated

program of research in advanced data processing technology needed for JSC's

main missions, Including administrative, engineering and science responsi-

bilitles. JSC agreed and entered into a continuing cooperative agreement

with UHCL beginning in May 1986, to jointly plan and execute such research

through RICIS. Additionally, under Cooperative Agreement NCC 9-16,

computing and educational facilities are shared by the two Institutions to

conduct the research.

The UHCL/RICIS mission is to conduct, coordinate, and disseminate research

and professional level education In computing and information systems to

serve the needs of the government, Industry, community and academia.

RICIS combines resources of UHCL and its gateway affiliates to research and

develop materials, prototypes and publications on topfesof mutual Interest

to its sponsors and researchers. Within UHCL, the mission is being

implemented through Interdisciplinary involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-

tion, Human Sciences and Humanities, and Natural and Applied Sciences.

RICIS also coUaborates with Industry in a companion program. This program

is focused on serving the research and advanced development needs of

Industry.

Moreover, UHCL established relationships with other universities and re-

search organizations, having common research interests, to provide addi-

tional sources of expertlse to conduct needed research. For emample, UHCL

has entered Into a special partnership with Texas A&M University to help

oversee RICIS research an'l education programs, while other research

organizations are Involved via the "gateway" concepL

A major role of RIC|S then is to find the best match of sponsors, researchers

and research objectives to advance knowledge in the computing and informa-

tion sciences. RICIS, working Jointly with its sponsors, advises on research

needs, recommends principals for conducting the research, provides tech-

nical and administrative support to coordinate the research and integrates

technical results Into the goads of UHCL, NASA/JSC and Industry.

i

i

= ÷

= =

_ _-

W

= #

=

._j Object Linking in Repositories

m

L

J

I

I

N

ii

IW

m

iJ

m

mw
m

m

m

!
u

!

I

W

Jura
m

m

!

ii
I

Ir

m

RICIS Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by David Eichmann, Jon Beck, John Atkins,

and Bill Bailey of West Virginia University. Dr. E. T. Dickerson served as RICIS
research coordinator.

Funding was provided by the Information Technology Division, Information

Systems Directorate, NASA/JSC through Cooperative Agreement NCC 9-16 between

NASA Johnson Space Center and the University of Houston-Clear Lake. The NASA

technical monitor for this activity was Ernest M. Fridge, HI of the Information

Technology Division, Information Systems Directorate, NASA/JSC.

m

The views and conclusions contained in this report are those of the authors

and should not be interpreted as representative of the official policies, either express

or implied, of UHCL, RICIS, NASA or the United States Government.

f

i

rl

W

w
r_
n

B

m

E

=m.

II

m
z

n

w

ll

=

m
m

_7

mm
w

I

lW

Imm

I!

w

I

SoRReL
i

West Virginia University
Software Reuse Repository Lab

Department of Statistics and Computer Science

West Virginia University

Morgantown, WV26506

(304) 293-3607 email: sorrel@cs.wvu.wvnet.edu

Object Linking in Repositories

David Eichmann (ed.)

June 1, 1992

L

m i

-Iraqi
!

m
J

RB

m
iiw

J

Lu

J

w

mw

m

W

Im

g

J

i
I

m
g

mm

Introduction

This final report consists of three sections: the original interim report, an

addendum describing the prototype, and a paper describing a new program slicing

technique for increasing the substructure and flexibility of repository artifacts

without requiring the separation of complex deposits.

I

Ui

M
!

m

U

mm

il

m

lib

i

nnl

z
UP

l
Im

ii

m

W

J

lid

m

g

m

u

w

w

mm

mm

[]

m
glm

w

n

w

w

w

B

w

!

Object Links in the Repository

Interim Report"

Jon Beck & David Eichmann

1. Introduction

This interim report explores some of the architectural ramifications of extending the Eich-

mann/Atkins lattice-based classification scheme [1] to encompass the assets of the full life--cy-

cle of software development. In particular, we wish to consider a model which provides explicit

links between objects in addition to the edges connecting classification vertices in the standard

lattice.

The model we consider here uses object-oriented terminology [3, 4]. Thus the lattice is

viewed as a data structure which contains class objects which exhibit inheritance.

This report contains a description of the types of objects in the repository, followed by a dis-

cussion of how they interrelate. We discuss features of the object--oriented model which support

these objects and their links, and consider behaviors which an implementation of the model

should exhibit. Finally, we indicate some thoughts on implementing a prototype of this reposi-

tory architecture.

2. A Bestiary of Objects

The repository is designed to contain the full set of assets created during the software life-

cycle. Therefore, there are many types of objects we wish the repository to contain. Listed be-

low are some obvious candidates for inclusion in the repository. This is an open list, indicative

but not exhaustive. Extensibility of the system, a strength of faceted classification, is a neces-

sity.

This work is supported in part by NASA subcontract 089, cooperative agreement NCC-9-16, project no.

RICIS SE.43.

-1-

Ourdiscussionusesa simplified waterfall life-cycle model solely for the purposes of illus-

tration. Our choice of models for this report was made on the basis of reaching the most general

audience, rather than upon the suitability of any particular modeling technique. The arguments

presented below apply equally well to any such technique.

_,1 Reauirements

A repository containing the assets of a full life--cycle of some software development project

will contain one or more requirements documents or requests for proposal which delineate the

need which the software met. These documents will be written in human text (possibly with dia-

grams and figures) but will refer to functionality provided by code.

m

w

2.2 S0ecifications

Based on the requirements, there will be specifications documents, also written in human

text. These documents describe the architecture of a software system which will provide the

functionality demanded in the requirements. Code is written based upon the architecture which

the specifications provide.

2.3 Code

Code is the central category type for the repository. While all the other objects are necessary

to a fully functioning repository, code is the repository's focus, and the main attraction for users.

In the prototype stage we concentrate on the Ada language, but extensible support for other

languages is essential. Given a grammar or specification for a language, the repository structure

must be able to accommodate code in that language.

2.4 Validation and Acceotance Documents. Test Data

After the software has been coded, the development team bears the burden of proving that it

meets the requirements and follows the specifications. There can be textual descriptions of how

the requirements are satisfied. There can also be files of test input data or script files which dem-

onstrate test cases. There may be files of output data captured to show compliance with the

u

i

i

g

i

m

I

I

-2-
mm

w

specifications. There may be caveats listing limitations or implementation dependencies. All of

these refer back to the requirements, specifications, and actual code of the software system.

2.5 Versions

All of the above assets may exist in the repository in multiple versions. Version 2.0 of a

word processor is very similar to, but distinct from, version 2.1, and it is valid for both versions

to exist in the repository. This means that all assets of that word processor package, from re-

quirements to acceptance report, may exist in multiple versions. There could also be a Differ-

ences document relating one version to the next, which belongs to two versions.

3. Object Granularity

The repository will contain not just code, but code at a number of different levels of granu-

larity. For example, a repository object might be a word processor, available for retrieval as a

complete word processing module. But embedded within that package are many other code ob-

jects. There might be a queue package for input buffering, which in turn contains a linked list

package. The search-and--replace module is an object, but from it can be generated two separate

submodules by the technique of program slicing [2, 7], the search submodule and the replace

submodule. Each of these is a repository object in its own right, separately retrievable via a

query on its own classification

Similarly, a specifications document for the word processor will exist. But within that docu-

ment are one or more sections detailing the specification for the search-and-replace module.

A file of test data may be input which exercises the entire package, or it may be input for

testing only a very small functional piece of the system. For example, a f'de containing mis-

spelled.words for ensuring that the spel/checker functions correctly may have nothing to do with

testing the printer output module of a word processing package. However, the file of misspelled

words properly resides in the repository as a member of the comprehensive test suite.

Everylargeobjectin the repository may contain or be composed of smaller objects also in

the repository in their own right. Conversely each small object may be not only a valid reposi-

tory object but also a constituent of a larger asset.

The issue here is one of complex structure; we use a canonical notion of a document to illus-

trate the concepts. Consider the general concept of a document with a fixed structuring scheme

(sections, subsections, paragraphs, and sentences) as shown in figure 1. Any given document

J

w

Document Title

Section Header

Subsection Header

Paragraph

Paragraph

Subsection Header

Paragraph

Paragraph

Section Header

Paragraph

Paragraph

Paragraph

Figure 1. A Sample Document

u

m
m

w

m

w

m

J

_m

U

m

_llll

-4-

contains an arbitrary number of sections, which in turn contain an arbitrary number of subsec-

tions, and so on.

Every large object in the repository may contain or be composed of smaller objects also in

the repository in their own right. Conversely each small object may be not only a valid reposi-

tory object but also a constituent of a larger asset.

The model includes the definition of the limits of granularity. In the prototype presented

here, a Document, the coarsest level, contains successively finer objects, down to paragraphs,

the finest level. The document class definition limits the number of granularity levels. For code,

a recursively defined class, there is no f'uxed number of granularity levels. Every bona fide block

in the code, no matter how deeply nested, is a repository object at its own level of granularity.

Thus the reference given in section 2.1 for the language's specification to allow parsing code

into its block structure.

u

w

= =

w

We do not imagine, however, that each lowest-level object will be replicated in every

coarser object of which it is a constituent part. A paragraph will not be replicated in every sub-

section, section, and document which contains it. Rather, the larger-grained objects will contain

references to the finer-grained ones, references which are transparent to the user. In object-ori-

ented terminology, the larger-grained objects are composite. More exactly, the references from

coarse- to free--grained objects are shared independent composite references. The reference

from a word processing system to one of its constituent string packages is a shared reference be-

cause the string package may be contained in more than one parent object. The reference is also

independent because the existence of the string package does not depend on the existence of the

word processing system. We might decide that the word processing system is of no further use

in the repository and delete it, but retain the string package on its own merit.

l

4. Object Links

As outlined above, there are many objects which will reside in the repository. It is obvious

that there are many relationships among them. A spell checker code module is related across

granularity levels up to the word processing package which coniains it and down to the buffer

package it contains. It is related across life--cycle phases, back to the specifications section

which discusses spell checking functionality and forward to the verification test of the spell

checker module. It is related acrossversions of the Software back toits predecessor and forward

to its successor.

A person browsing in a conventional library has only one dimension by which to follow

links to find related books. From a book of interest, the browser can search left or fight along the

shelf to try to find related works. But our repository has the ability to provide many dimensions

of links to related objects. The basic lattice structure provides two mechanisms for browsing for

related objects, relaxation of facet values in queries and use of closeness metrics which produce

queries containing conceptually similar or related terms.

In addition to these, the data structure of the objects in the lattice should allow the inclusion

of explicit links along all the dimensions given above. These links connect related objects and

must be available to the browser as a means to identify objects related along the axes of granu-

larity, life-cycle phase, and version. All repository object links are bidirectional and reflexive.

They may be one-to-one, one-to-many, or many-to-many.

The combination of a rich linking structure within a lattice framework produces the potential

for an extremely powerful interface mechanism. Traditional relational query systems can only

retrieve data blindly, with no notion of their location in the database. Most current object-ori-

ented systems provide only navigational access to data, with limited querying ability. Our model

provides full query access to any node in the lattice through the facet-tuple mechanism. But our

model also provides full navigational access via the object structure with its cross links. With

m

m

m
i

=

i

i

m

u

u

w

m

m

m

m

-6-
z

w

m

i

--,d

7-

this combination of declarative queries and procedural navigation, it is thus possible for the user

to browse through the entire repository finding and pinpointing the exact object of interest.

Object--oriented database systems support our link concepts through object identity. A re-

flexive relationship implies that the parties (i.e., objects) to the relationship store the identity (or

identities) of the objects to which they relate. This is very similar, but not exactly equivalent, to

the concept of pointers in more traditional programming languages.

4.1 Ph0,_e Links

Phase links are those which join one object in the lattice to another object which is related by

virtue of being the "same" object at a different phase of the life cycle. This type of link joins, for

example, a requirement to its embodiment as a specification, and then similarly on to its imple-

mentation in code.

There must be a link not only between the word proeessor's specification document and the

word processing code, but also between the section of the specification which treats of the

search-and-replace function and the code module which implements that functionality.

Figure 2 illustrates the duality of reference between the various artifacts in the life cycle. A

requirements document has as its specification some design document (a one-to-one relation-

ship); that same design document in turn was specified by the requirements document. A given

design document may specify aspects of multiple programs (illustrating a one-to-many relation-

ship).

4.2 Granularity Links

Granularity links are those which join objects across granularity levels. This type of link

joins, for example, a section in a document is linked to the paragraphs it contains, and also to

the chapter which contains it. Similarly, in source code, a search program slice has links to the

search--and-replace module from which it was derived via slicing.

-7-

w

Program

Requirements Design Program
Document Document

Program

Figure 2. Linkage Between Objects from Differing Phases

The transition from our conceptual model of a document as illustrated in figure 1 to the ob-

ject model of a document as illustrated in figure 3 exemplifies the representation of complex

structure in object-oriented systems.

_z

w

Title Title

Document [Paragraph]

Section

Section \
Subsection

I Subsection I

Paragraph

Title

Figure 3. The Granularity References for a Portion of Figure 1

Hence, a document is a title and an ordered collection of sections. A section is a title and an

ordered collection of subsections, and so on. Object identity implies that the document does not

actually contain all of its nested components, but rather it contains references to them (effec-

tively pointers to the other objects).
IEW

-8-

m

w

L _

._._.

v

4.3 Version Links

If versions are added to the repository, a new dimension is added. In this dimension there

are links from an object forward to a later version or backward to a previous version of the same

object concept. These links are orthogonal to the phase links between objects in the same pro-

ject. It is possible, however, that the version relationship is not as simple as lineal descendancy.

Rather, the versions of an object may form a directed acyclic graph, as shown by the bold lines

in figure 4, designating the derivation of version 2 from version 1, and the derivation of version

3 from both version 1 and version 2. Any number of new Versions may be derived from one or

more existing versions. In other words, versioning can exhibit all the characteristics of temporal

inheritance.

I CDnCePetUntal _N,_ Document I

"\ _ i versionl _]

x__ Document

Document _ version 3]

version 2]

Figure 4. A Sample Multiple-Version Document

The set of versions for some document artifact in the life cycle is just a labeled association,

with the version number acting as label for a specific instance of a document object. This leads

to the distinction between a conceptual document and a document version. A conceptual docu-

ment contains the named associations comprising the various versions, each of which are docu-

ments in their own right, as shown in figure 4.

Note that any given object can be referenced by any number of other objects, so that it is

quite reasonable for a given section to appear unchanged in multiple versions of a document.

This is accomplished by storing the identity of the section in each of the documents' respective

ordered sequence of sections.

-9-

5. The Model
m

The above sections describe an architecture for a lattice-based faceted repository of life-cy-

cle assets. Many of the features of this architecture are couched in object-oriented terms. We use

these terms because the object--oriented paradigm provides semantics closer to the abstract con-

cept we are trying to model than any other yet developed. Use of object--oriented terminology

and concepts, therefore, leads us directly into the use of an object-oriented data model for de-

signing the data structures of the lattice.

U

w

The conceptual structure of the repository is a lattice, demanding an object-oriented model

which explicitly includes multiple inheritance. As depicted schematically in figure 5 and tex-

tually in figure 6, the fundamental superclass of the lattice is the LatticeNode class. The two sub-

classes of LatticeNode are FacetNode and TupleNode, corresponding to the node types in the

Facet and Tuple sublattices as explained in [1].

1

Figure 5. The Class Hierarchy

.......... ÷ _

The Tuple sublartice contains the references to the items actually stored in the repository. An

instance of TupleNode contains the attribute set of RepositoryElement to accomplish this. In our

simplified example, a RepositoryElement is a class with only two subclasses, Document and

Code. In a full repository implementation there would be other subclasses for storing test data

and make scripts, for instance.

-10-

i

m

L

w

m

W

v

= .

w

x_--

w

LatticeNode
set of LatticeNode n parents
set of LatticeNode -- children

FacctNode : subclass of La_ccNode
set of FacexValue

TupleNode : subclass of LatticeNode
set of FacetNode
set of RepositoryElement

RepositoryElement
ObjectTitle
ObjectVersion
ObjectAuthor
ObjectDate
...other attributes

Document : subclass of RepositoryElement
...other attributes
set of SectionObject -- constituent items
set of FigureObject -- constituent items

Section
SectionHeader
SectioaNumber
set of Document-- parents
set of Subsection -- constituent items

Subsection
SubsectionHeader
SubsectionNumber
set of Section _ parents
set of Paragraph-- constituent items

Paragraph
ParaNumber. Integer
set of Subsection -- parents
ParaTcxt: String

Code : subclass of RepositoryElement
CodeLanguage
...other attributes
set of CodeElement -- constituent items

CodeElement
set of Code _ parents
set of Declarations
set of Statements

Figure 6. The Class Definitions

-11 -

The RepositoryElement class defines attributes of general interest such as Title, Author, Ver-

sion, Date. These attributes constitute general metadata about repository object which would be

displayed to the user. The subclasses Document and Code have further attributes which are spe-

cific to their types. For example, a Document instance might contain a Drawing, whereas a piece

of Code would have a ProgrammingLanguage.

As explained in Section 3, a Document in the repository is not atomic but is composed of

instances of the classes Section, Subsection, etc. Each of these classes is an object defined with

its own appropriate attributes. Similarly a Code instance contains CodeElement instances.

w

i

=

w

T

The encapsulation feature of the object-oriented paradigm makes this model easily extensi-

ble. For example, if in the future we added to the repository a sound processing program which

required a digitized audio score as an initialization file, the requisite class definition of that ob-

ject could be added to the schema with no disruption of the current existing definitions.

w

m

6. Future Work
=.__

We have identified the major objects which will reside in the repository and we have pro-

posed an object--oriented data model for our lattice. With this model it is possible to capture the

abstract concept of a static lattice repository which exhibits inheritance among its objects and

many complex linkages between them. This model also provides for the encapsulation of the

functions which allow navigation between and display of the objects in the repository.

We now intend to examine a number of commercial and experimental object-oriented data-

base management systems to determine the feasibility of implementing this model. The result of

this examination should be a prototype of ASV4, the full life--cycle reuse repository. We antici-

pate that this prototyping phase will generate considerable feedback for refining and fine-tuning

the object--oriented data model.

-i2-

m

m

m

m

tit

=_

I

!
m

a

w

..-..

Particular areas that warrant further examination include:

>- the role of methods (mechanisms that implement behavior) in the presentation

of and nagivation throught the repository and its contents;

the ties between an object-oriented model of the repository and a hypermedia

representation of the repository; and

_z
2_ 7.

w

v

>- the assistance an object-oriented model of the repository can provide in qual-

ity assessment [5, 6].

References

[1]

[2]

[3]

Eichmann, D. A. and J. Atldns, "Design of a Lattice-Based Faceted Classification Sys-

tem," Second International Conference on Software Engineering and Knowledge Engi-

neering, Skokie, IL, June 21-23, 1990, pages 90-97.

Gallagher, K. B. and J. R. Lyle, "Using Program Slicing in Software Maintenance,"

IEEE Transactions on Software Engineering, vol. 17, no. 8, August 1991, pages
751-761.

Kim, W., Introduction to Object--Oriented Databases, MIT Press, Cambridge, MA,

1990.

[4] Meyer, B., Object-Oriented Software Construction, Prentice-Hall, New York, NY,
1988.

[5]

[6]

[7]

SofTech, Inc., A Research Review of Quality Assessment for Software, AdaNet Report

ADANET-FD-R&T-086--0, April 30, 1991.

SofTech, Inc., A Quality Assessment Trade Study, AdaNet Report ADANET-

FD-R&T-086--0, July 12, 1991.

Weiser, M., "Program Slicing," IEEE Transactions on Software Engineering, vol.

SE-10, no. 4, July 1984, pages 352-357.

-13-

J

m

w

r_

w

W

nw_

v

B

w

J

I

u

9nl_

w

11pw

LIW

mm

ipm

V

m
lw

iiw

m.

-r--

Object Links in the Repository

Addendum

Jon Beck, John Atldns & Bill Bailey

1 - Introduction

= ;

=

t__

J

In a previous report [Object Links white paper, 27 Sep], hereafter referred to as the "Interim

Report", we described a software repository model, based on the object-oriented data model, which

was capable of encompassing all of the assets of the full life-cycle of a software development ef-

fort. This report contains a description of our efforts to implement this repository architecture using

a commercially available object-oriented database management system. We describe some of the

features of this implementation and point to some of the next steps to be taken to produce a working

prototype of the repository.

The goal of the present effort was to develop the *structure* of the repository, while the next

major step, not yet developed, will be to implement the *behavior* of the repository. We are thus

here concerned with the static data in the repository, and the relationships among the data. Thanks

to the built-in semantics of object-oriented design, we have developed an architecture which allows

us to store repository assets in a structure which reflects the static relationships among the various

objects of the software development life-cycle.

2 - Conceptual Schema

We described the schema on which our implementation is based in the Interim Report. The ob-

ject-oriented architecture described in the present report has some differences from the original one

in the Interim Report, and so we present here a brief description of the architecture which we ac-

tuaUy implemented.

Fundamentally, the architecture is designed to embody the semantics of a lattice-based faceted

repositoryof life-cycleassets.We assumethatanycommercialobject-orienteddatamanagement

systemwill haveabuilt-in distinguishedclasscalled "Object"whichservesastheparentclassof

all user-definedclassesandobjectsin thesystem.

We definedtwo subclasses of Object, called LatticeNode and RepositoryElement. These two

are the parent classes of two completely distinct categories of objects which we have defined. The

first category comprises the objects which make up the structure of the lattice itself. All of these

objects are descendants ofLatticeNodel _e second category consists0f_e assets which the lattice

itself actually contains. Each of these assets is an instance of RepositoryElemenc As an analogy,

the lattice objects (LatticeNodes) are like the wood out of which a set of pigeonholes is built, and

the repository elements are like the contents of the pigeonholes.

As explained in [Eichmann & Atldns, SEKE Lattice paper], the very high power of a faceted

classification scheme is due in part to the very large number of potential classifications. In fact,

however, this can pose a problem for any physical system in that the number of potential classifi-

cations, and therefore the number of lattice nodes, in a real-world software repository can easily

exceed the number of atoms in the universe. Clearly, then, the lattice must be represented as a

sparse data structure; the only nodes which exist are those which are actually populated with one

or more repository assets.

In addition, we have used the notions of domain analysis to further reduce the potential search

space of the repository. From an operational point of view, a domain can be thought of as defined

by a set of facets. All assets which have an exact, specific set of facets in common form a domain.

For example, the Generic ADT domain might have Language, Unit Type, and Type of Interest as

facets, while the Data Manager domain might consist of the facets Language, Unit Type, Data

Model, and Query Language. In the full lattice model, a user may query the repository using any

arbitrary set of facets, for example Language and Unit Type, without regard to specific domains.

In our prototype, however, we restrict queries to Named Domains, and require a query to have a

value for all and only those facets in the domain being queried. This restriction shrinks the search

2

: r

!

m

= =

I

w

V"

m

W

w

m

ui'

space dramatically, while not reducing the power of the model at all. Any set of facets may be

named as a domain, and thus queried, if the assets at hand indicate its usefulness.

The result of populating only Named Domains-with assets results in (or rather, allows) a two-

tiered or two-dimensional split in the lattice. At the "top level" is a lattice consisting only of Facet-

Nodes, nodes whose facets are empty of values (and, therefore, of assets). This lattice forms the

structure of Named Domains. Each FacetNode is also the top, distinguished node of a second-level

lattice, a lattice of ValueNodes. Every ValueNode contains exactly the facets of its parent Facet-

Node, with its own unique set of values for each of these facets. A given FacetNode only exists in

the repository if it is populated with a set of RepositoryElements. The RepositoryElements thus

form the sparse data structure which actually contains the repository's assets.

3 - Implementation

w

For our implementation of the object schema of the repository, we used Servio Corporation's

GemStone database system. The code which created the classes and their access methods was writ-

ten in OPAL, the object-oriented programming language of the GemStone system. We carried out

the programming effort within Topaz, which is Servio's OPAL Programming Environment.

As noted in the Interim Report, a central design tenet of the repository schema must be exten-

sibility. There is no way of predicting in advance what kinds of objects will ultimately reside in the

repository, and no theoretical limit to their number or physical manifestation. Thus it is impossible

to create pro forma the definitions of classes to contain all possible future repository object. Fortu-

nately, the object schema presented here doesnot require these definitions in advance; new defini-

tions can be added at any time without disturbing the executing environment of the existing

repository.

Notwithstanding an inability to predict all of the needed classes for an arbitrary repository,

some classes will almost certainly be needed. We have thus provided as examples two subclasses

of RepositoryElement,DocumentandCode.DocumentandCodeeachconsistof setsof Documen-

tElementsandCodeElements,respectively.

m

l

One note on the physical layout of the OPAL code with which the class structure is defined is

that the instance variables in the classes are initially defined without constraints. Then, in a second

source file, the constraints on the instance variables are defined. This is done because the class-

composition hierarchy contains several circular references. For example, a ValueNode contains

RepositoryElements, but the parentNode instance variable of a RepositoryElement is a ValueNode.

In GemStone, constraints can only be placed on instance variables of classes which already exist.

4 - Future Work

As mentioned above, we have developed the static structure of the repository. With this struc-

ture we are able to store all the assets of the full life-cycle of software development, regardless of

the physical form an asset may take. What is now needed is to develop the behavior of each class

of asset, as well as of the lattice structure itself, for inclusion into the class definitions.

Most of this behavior is concerned with the interface of the repository with the user. For exam-

ple, a query is allowed only within the context of a Named Domain. The effect of this is to require

that a query must specify a set of values for each of a set of facets which forms a domain. Deter-

mining which domain is being queried, and verifying the values of each facet, before actually hand-

ing the query on to the GemStone syste m, is a set of behavioral methods in the user interface.

Similarly, in the lattice model it is possible to navigate the lattice using any of the object links

described in the Interim Report. This navigational behavior will also be included in the user inter-

face.

5 - The OPAL Code

! [. . .OO]CLASS.OPL

' Jon Beck

4

w

w

mmw

W

w

w

W

W

m

I

m

w

L_

p ,

L

r

--=
m

! 13 May 1992

!

! The object schema for the repository, implemented in GemStone OPAL code.

! These are the class and subclass definitions, without constraints.

! Constraints, being circular references, are in another file.

run

Object subclass: 'LatticeNode'

instVarNames: #('parents' 'children'

'facets'

'domainName')

inDictionary: UserGlobals

isModifiable: True.

run

Set subclass: 'LatticeNodeSet'

instVarNames: #()

classVars: #('subclasses')

poolDictionaries: #[]

inDictionary: UserGlobals

constraints: LatticeNode

instancesInvariant: false

isModifiable: True.

run

LatticeNode subclass: 'FacetNode'

instVarNames: #('sublatticeDescendants')

inDictionary: UserGlobals

isModifiable: True.

LatticeNode subclass: 'ValueNode'

instVarNames: #('relatedLinks'

'values'

'repositoryElements'

'metaData')

inDictionary: UserGlobals

isModifiable: True.

Object subclass: 'RepositoryElement'

instVarNames: #('parentNode'

'title'

'version'

'author'

'language'

'creationDate'

'inclusionDate'

'metaData'

5

'data'

'containedIn'

'contains f

'previousPhase'

'nextPhase'

'previousVersion'

'nextVersion'

'relatedLinks')

inDictionary: UserGlobals

isModifiable: True.

run

Set subclass: 'RepositoryElementSet'

instVarNames: #()

classVars: #('subclasses')

poolDictionaries: #[]

inDictionary: UserGlobals

constraints: RepositoryElement

instancesInvariant: false

isModifiable: true.

run

RepositoryElement subclass: 'Document'

instVarNames: #()

inDictionary: UserGlobals

isModifiable: True.

RepositoryElement subclass: 'Code'

instVarNames: #()

inDictionary: UserGlobals

isModifiable: True.

Object subclass: 'DocumentElement'

instVarNames: #()

inDictionary: UserGlobals

isModifiable: True.

%

run

DocumentElement subclass: 'TextElement'

instVarNames: #('sectionType'

'sectionTitle'

'text')

inDictionary: UserGlobals

isModifiable: True.

DocumentElement subclass: 'GraphicElement'

6

g

m

W

W

w

W

v

w

m

m.
m_
w

w

w

E

w

_=

%...

=

F

w

instVarNames: #('graphicType'

'graphicDetails'

'graphicTitle'

'graphic')

inDictionary: UserGlobals

isModifiable: True.

Object subclass: 'CodeElement'

instVarNames: #('numberOfLines'

'numberOfStatements'

'body')

inDictionary: UserGlobals

isModifiable: True.

%

! [...OO]CONSTRAINT.OPL

! Jon Beck

! 13 May 1992

! Now the constraints for the variables which will be used for access.

! Only those variables generally used for queries need be constrained.

run

LatticeNode instVar: 'parents' constrainTo: LatticeNodeSet.

LatticeNode instVar: 'children' constrainTo: LatticeNodeSet.

LatticeNode instVar: 'facets' constrainTo: LatticeNodeSet.

LatticeNode instVar: 'domainName' constrainTo: String.

%

run

FacetNode instVar: 'sublatticeDescendants' constrainTo: LatticeNodeSet.

%

run

ValueNode instVar : 'relatedLinks ' constrainTo: LatticeNodeSet.

ValueNode instVar: 'values' constrainTo: String.

ValueNode instVar : 'repositoryElements' constrainTo: RepositoryElementSet.

ValueNode instVar: 'metaData' constrainTo: String.

%

run

RepositoryElement instVar: 'parentNode' constrainTo: ValueNode.

RepositoryElement instVar: title' constrainTo: String.

RepositoryElement instVar:

RepositoryElement instVar:

RepositoryElement instVar:

RepositoryElement instVar:

RepositoryElement instVar:

RepositoryElement instVar:

version' constrainTo: String.

author' constrainTo: String.

language' constrainTo: String.

creationDate' constrainTo: DateTime.

inclusionDate' constrainTo: DateTime.

metaData' constrainTo: String.

7

RepositoryElement instVar:

RepositoryElement instVar:

RepositoryElement instVar:

RepositoryElement instVar:

RepositoryElement instVar:

RepositoryElement instVar:

RepositoryElement instVar:

%

containedIn' constrainTo: RepositoryElement.

contains' constrainTo: RepositoryElement.

previousPhase' constrainTo: RepositoryElement.

nextPhase' constrainTo: RepositoryElement.

previousVersion' constrainTo: RepositoryElement.

nextVersion' constrainTo: Repos_toryElement.

relatedLinks' constrainTo: RepositoryElement.

run

TextElement instVar: 'sectionType' constrainTo: String.

TextElement instVar: 'sectionTitle ° constrainTo: String.

TextElement instVar: 'text' constrainTo: String.

%

run

GraphicElement instVar: 'graphicType' constrainTo: String.

GraphicElement instVar: 'graphicDetails' constrainTo: String.

GraphicElement instVar: 'graphicTitle' constrainTo: String.

%

run

CodeElement instVar: 'numberOfLines' constrainTo: SmallInteger.

CodeElement instVar: 'numberOfStatements' constrainTo: Smalllnteger.

CodeElement instVar: 'body' constrainTo: String.

%

! [...OO]METHOD.OPL

! Jon Beck

! 13 May 1992

! The methods for the classes.

run

LatticeNode compileAccessingMethodsFor:

#(#parents #children #facets #domainName).

%

run

FacetNode compileAccessingMethodsFor:

#(#sublatticeDescendants).

ValueNode compileAccessingMethodsFor:

#(#relatedLinks #values #repositoryElements #metaData).

RepositoryElement compileAccessingMethodsFor:

#(#parentNode #title #version #author #language #creationDate #inclusionDate

#metaData #data #containedIn #contains #previousPhase #nextPhase

#previousVersion #nextVersion #relatedLinks).

%

g

f

m

J

L_

w

D

W

m

IW

run

TextElement compileAccessingMethodsFor:

#(#sectionType #sectionTitle #text).

GraphicElement compileAccessingMethodsFor:

#(#graphicType #graphicDetails #graphicTitle #graphic).

CodeElement compileAccessingMethodsFor:

#(#numberOfLines #numberOfStatements #body).

%

z

9

mnw

V

J

=

qw_

mm

mlW

q_

= _

Balancing Generality and Specificity in

*t
Component-Based Reuse

David Eichmann and Jon Beck

Software ReuseRepository Lab

Dept. of Statistics and Computer Science

West Virginia University

Send correspondence to:

David Eichmann

SoRReL

Dept. of Statistics and Computer Science

West Virginia University

Morgantown, WV 26506

Email: eichmann@cs.wvu.wvnet.edu

E

L

4--

* Submitted to The International Journal o/Software Engineering and Knowledge Engineering.

t This work was supported in part by NASA as part of the Repository Based Software Engineering project,
cooperative agreement NCC-9-16, project no. RICIS SE.43, subcontract no. 089 and in part by a grant from
MountainNet Inc.

Abstract
=

For a component industry to be successful, we must move be-

yond the current techniques of black box reuse and genericity to a

more flexible framework supporting customization of components

as well as instantiation and composi_on Of components. Customiza-

tion of components strikes a balance between creating dozens of

variations of a base component and requiring the overhead of unnec-

essary features of an "everything but the kitchen sink" component.

We argue that design and instantiation of reusable components have

competing criteria - design-for-reuse strives for generality, design-

with-reuse strives for specificity - and that providing mechanisms

for each can be complementary rather than antagonistic. In particu-

lar, we demonstrate how program slicing techniques can be applied

to customization of reusable components.

W

W

y

w

m

h_

N

W

_4

!

!

m

m

I - Introduction

The impediments to a successful reuse infrastructure in the software engineering community

have typically been separated into social and technological issues [26]. Furthermore, the social is-

sues (e.g., comprehension, trust, and investiture) often are characterized as being the more critical,

as there is a perception that all of the technical issues (e.g., environments, repositories, and linguis-

tic support) have been solved [27]. We do not agree with this assessment (see [8] for our arguments

regarding repositories and environments), and furthermore believe that appropriate application of

technology can alleviate certain of the social issues just mentioned.

This paper addresses two reuse impediments - component comprehension by a reuser [14] and

the fitness of a component for a given application - and how technical support, in this case lan-

guage features and program slicing, alleviate these impediments. These two impediments drive the

consumer side of reuse repository design, for without comprehensibility users will not select arti-

facts from the repository, and without adequate conformance to requirements users will not incor-

porate artifacts into systems even if they do select them. These two impediments also drive the

design process for reusable components, since components perceived as ill-suited for reusers" ap-

plication domains (and hence not incorporated into the resulting systems) have not met the require-

ments of a design-for-reuse effort.

We begin in section 2 by characterizing the inherent conflict between the design goals for de-

sign-for-reuse and design-with-reuse. We then review mechanisms that support particular structur-

al and behavioral aspects of component design in section 3. The mechanisms described support

flexibility in the design of a component. We consider mechanisms in section 4 to constrain an im-

plementation, supporting specificity in the instantiation of a component, and show in section 5 how

to employ program slicing as one such mechanism. Section 6 demonstrates the application of our

technique to a moderate-sized example. _ _

Balancing Generality and Specificity 1 4130/92

mw

2 - Design-For-Reuse versus Design-With-Reuse

Design for reuse focuses on the potential reusability of the artifacts of a design process. Design

with reuse, on the other hand, focuses on employing existing artifacts wherever possible in the de-

sign process. The intent of the two approaches, and hence the various criteria that each of them em-

ploy, is then quite distinct. In particular, design for reuse strives for generality, even to the point of

additional cost to the current project, and design with reuse strives to reduce cost to the current

project, even to the point of adapting non-critical project requiremen_ to achieve conformance

with existing artifacts.

Gamett and Mariani proposed the following attfibutesfgrreusable software [10]:

• environmental independence - no dependence on the original development environment;

• high cohesion - implementing a single operation or a set of related operations;

• loose coupling - minimal links to other components;

• adaptability - easy customization to a variety of situations;

• understandability;

• reliability; and

• portability. _ _

These attributes clearly reflect goals that should apply to all products of a design-for-reuse effort,

and some of these attributes (particularly understandability and reliability) apply to all software de-

velopment efforts. Not so cleat is whether these attributes reflect the goals of design-with-reuse

efforts.

W

u

F

111

I

w

m

We contend that there is an inherent conflict between design'for-reuse and design-with-reuse

that centers upon adaptability. Design-for-reuse strives to create artifacts that are as generally ap-

plicable as possible, in the worst case creating "everything-but-the-kitchen-sink" artifacts, loading

a component with features in an effort to ensure applicability in all: situafi0ns':Des!gn'with-_use

strives to identify that artifact which most specifically matches a given requirement. Anything less

m

w

m
l
w

w

w

w

IW

Balancing Generality and Specificity 2 4/30/92

J

r -

r

;k--

requires additional effort, both in comprehension and coding. Anything more carries with it the

penalty of excess resource consumption and increased comprehension effort.

The specificity that we seek in design-with-reuse takes two forms - the f'trst is that of avoiding

additional functionality in a simple component; the second is that of avoiding additional function-

ality in an abstraction, implemented as a package/module. Specificity becomes increasingly critical

when considering scale. The additional storage consumed and increased comprehension effort

posed by a simple abstract data type quickly become the multi-megabyte "hello world" applica-

tions of today's user interface management systems, and threaten intractability in the domain of

megaprogramming [4, 19].

3 - Language Mechanisms Supporting Design-For-Reuse

Designing a software component for reuse involves a number of issues, including analysis of the

intended target domain [21, 22], the coverage that this component should provide for the domain

[22], and the nature and level of parametefization of the component [7, 28, 29]. A number of de-

velopments in programming language design directly bear upon these issues. We focus here upon

those we see as most beneficial.

3.1 - Procedural and Modular Abstraction

The obvious advantages that functions and procedures provide in comprehension and reuse of

portions of a program (even if the reuse is only at a different location in the same program) are so

well recognized, that no contemporary language proposal is taken seriously without them. The

package (or module) concept, with separate specification and implementation of a collection of

data and procedural definitions, has arguably reached the same level of acceptance. SommerviUe's

list of classes of reusable components (functions, procedures, declaration packages, objects, ab-

stract data types, and subsystems) [25] indicates the depth of this acceptance - virtually every class

listed is directly implementable using one of the two mechanisms (objects being the only non-ob-

vious fit).

Balancing Generality and Specificity 3 4/30/92

w

3.2 - Parameterization and Genericity

The utility of a function or procedure is severely limited without the ability to provide infor-

mation customizing the effect of a specific invocation. Parameters comprise the explicit contract

between a function and its invocations, and are generally accepted as far preferable to the implicit

contract provided by shared global state. Genericity, or more formally, parametric polymorphism

[6], involves the parametefization of program units (both functions/procedures and packages/mod-

tries) with types, variables, and operations (functions, procedures, tasks, and exceptions). Parame-

ters effectively support families of invocations. Genericity extends this support to families of

instantiations, each with its own family of invocations, providing increased adaptability and port-

ability [28].

3.3 - Inheritance

W

L

v

W

W

Inheritance involves the creation of generalization/specialization structures, a tree in the case

of single inheritance, a la_c _ in the case of multiple inheritance. These generalization_specializa-

tions may be structural (in the case of subtypes [6]) or behavioral (in the case of classes [11]).

Whatever the structuring mechanism, inheritance supports the creation of variations of a base com-

ponent, each with its own interface [15], as well as instances of those variations. Inheritance thus

is a very useful mechanism for the Creation of certain classesof software artifacts. Note, however,

that using inheritance as a reuse-enabling mechanism is not without its own hazards, most notably

scalability and the violation of information hiding [23, 24].

"mmr

m

4- Language MechaniSms Supporting Design-W|ih'Reuse
w

The previous section primarily addressed the creation of program structure. Our primaryinter-

est in this section involves not the creation of new reusable components, but rather their natural

involvement in the development process. This corresponds to the responsibilities of Basili' s project

organization [3].

wi
m

w

!

llW

I

l

.... :=: :....... i

Balancing Generality and Specificity 4 4/30/92 ___

v

_w.

_ =

w

4.1 - Procedural and Modular Abstraction

Much of today's reuse takes place at the level of procedures and packages, either as source or

object code. The linguistic and environmental mechanisms for this, including source and object li-

braries and separate compilation, provide little over what a simple text editor with cut and paste

commands provides. The onus of comprehension and adaptation is placed upon the reuser, partic-

ularly if the reuser is interested in increasing the specificity of the component (which may even be

proscribed by the social infrastructure, i.e. managemen0. The consequence of design-with-reuse in

this context is thus monolithic reuse, an all or nothing acceptance of an entire component.

4.2 - Genericity

Genericity readily supports the creation of specializations of the generic artifact through instan-

tiation. However, genericity as defined in languages such as Ada provides little beyond complete

instantiation of a generic component into a completely concrete instance. Further, partial instanti-

ation does little in terms of additional flexibility, as every successive partial instantiation makes

the resulting generic more concrete. Hence genericity provides the same form of monolithic reuse

as that described in the previous section, with the option of customizing the instances.

4.3 - Inheritance

L

Inheritance performs as readily in support of a reuser as in support of a developer of compo-

nents. The reuser can both instantiate new instances of the component and derive new component

classes from the original. This second issue is a particularly beneficial one, as it allows for the de-

velopment of unanticipated refinements to the program model without requiring adaptation of ex-

isting code. However, inheritance exhibits the same specificity limitations as abstraction and

genericity, supporting only monolithic reuse, in the case of instantiation, or incremental monolithic

reuse, in the case of class refinement.

w

Balancing Generality and Specificity 5 4/30/92

5 - Program Slicing

The mechanisms discussed in sections 3 and 4 add structure and/or complexity to a program.

Parameterization and genericity increase the interface complexity of a program unit. Packages and

inheritance increase either the number of program units or the structural complexity of those units.

Hence, current languages do not have explicit mechanisms that address the conflicting goals of de-

sign-for-reuse and design-with-reuse. We therefore propose a new mechanism for reconciling the

two approaches (by increasing component structural specificity) which works in conjunction with

the facilities provided in Ada- a new form of program slicing. We use Ada for our examples, as it

is a language whose built-in features facilitate the types of transformations which we invoke. How-

ever, the concepts we present are not confined to any particular language.

w

w

w

m

In his thesis [30], Weiser introduced the concept of program slicing. In this form of slicing,

called static slicing, a slice of a program is an executable subset of the source statements which

make up program. A slice is specified by a variable and a statement number, and consists of all

statements which contribute to the value of that variable at the end of execution of that statement,

together with any statements needed to form a properly executing wrapper around the slice proper.

Dynamic slicing, [1, 2, 17] is a second form of slicing which is determined at runtime and is

dependent on input data. A dynamic slice is the trace of all statements executed during a program

run using a particular input data set, refined by specifying only those executed statements which

reference a specified set of variables. Dynamic slicing was specifically designed as an aid in de-

bugging, and is used to help in the search for offending statements in finding a program error.

By definition, static slicing is a pre-compilation operation, while dynamic slicing is a run-time

analysis. Our interface silting _longs in the category of static slicing, as it is a data-independent

pre-compilation code transformation. Since our interest here is only with static slices, henceforth

we will use slicing to mean static slicing, and we will not again discuss dynamic slicing.

J

m

!

I

W

W

Balancing Generality and Specificity
6 4130/92 !

- .

v

i procedure wc (theFile : in string; nl,
2 inword : boolean := FALSE;

3 theCharacter : character;

4 file : file_type;

5 begin

6 open(file, IN_FILE, theFile);

7 while not end of file(file) loop

8 get(file, theCharacter);

9 nc := nc + I;
i0 if theCharacter = LF then

ii nl = nl + i;

12 end if;
13 if theCharacter = i ,

14 or theCharacter = LF

15 or theCharacter = HT then

16 inWord = FALSE;

17 else if not inWord then

18 inWord = TRUE;

19 nw = nw + i;

20 end if;

21 end loop;

22 close(file);

23 end wc;

Figure h wc, a procedure to count text

nw, nc : out natural := 0) is

m

w

5.1 - Previous Work in Slicing

In his thesis [30] and subsequent work [31, 32, 33], Weiser used slicing to address various is-

sues primarily concerned with program semantics and parallelism. Ganagher and Lyle more re-

cently employed a variation of slicing in limiting the scope of testing required during program

maintenance [20].

Program slicing has been proposed for such uses as debugging and program comprehension

[32], parallelization [5], merging [12, 18], maintenance, and repository module generation [9].

As an example of program slicing, we present the following example, adapted from Gallagher

& Lyle [9]. The procedure we, presented in Figure 1, computes the count of lines, words, and char-

acters in a f'de.* Figure 2 gives the results of slicing wc on the variable nc at the last line of the

procedure. Since the variables ni, nw, and inword do not contribute to the value of nc, they do

not appear in the slice. Also, the statements on lines 10 through 20 of the original procedure do not

* This procedure is not entirely correcL since the Ada get procedure skips over line terminators, unlike the C

getchar function. We adapted wc in this way to clarify its actions and retain the flavor of the original function.

Balancing Generality and Specificity 7 4/30/92

1 procedure wc (theFile : in string; nc

2 theCharacter : character;
3 file : file_type;

4 begin

5 open(file, IN_FILE, theFile);

6 while not end_of_file(file) loop

7 get(file, theCharacter);

8 nc := nc + I;

9 end loop;

i0 close(file);

ii end wc;

: out natural := 0) is

Figure 2: wc sliced on nc

appear in the slice. While this slice follows the spirit of a classic slice, and will serve to illustrate

classic slicing, it also differs in several important ways, as described below.

5.2 - Interface Slicing

We propose a new form of slicing, interface slicing, which is performed not on a program but

on a component. Similar to previous work in static slicing, our interface slice consists of a compil-

able subset of the statements of the original program. The interface slice is defined such that the

behavior of the statements and the values of the variables in the slice is identical to their behavior

and values in the original program.

v

II

u

'WD

W

W

However, while previous slicing efforts have attempted to isolate the behavior of a set of vari-

ables, even across procedural boundaries, our slice seeks rather to isolate portions of a component

which export the behavior we desire. In the following discussion, we assume for simplicity that a

package implements a single ADT, and we use package and ADT interchangeably.

Unlike standard slicing techniques which are usually applied to an entire program, interface
5

slicing is done on a fragment of a program - a component - since our goal is to employ the neces-

sary and sufficient semantics of a component for usein the target system. Interface slicing is at the

level of procedures, functions, and task types. If a procedure is invoked at all, the entire procedure

must be included, as we have no way of knowing a priori what portion of the procedure will be

needed.* However, if an ADT is incorporated into a system, not necessarily all of its operations are

!

w

i

n

w!

w

I

v

i
n

m

Balancing Generality and Specificity 8 4/30/92

invoked.Theinterfaceslicingprocessdetermineswhichoperationsareto beincluded,andwhich

canbeeliminated.Becauseinterfaceslicingtreatsproceduresatomically,thecomplexprogramde-

pendencegraphanalysisof standardslicing[13] isnotnecessary.A singlepassof thecall graph

of anADT's operationsis sufficientto determinetheslice.Weuse"operation"asageneralterm

to encompassprocedures,functions,andexceptions,andincludetaskswith proceduresin thata

taskis anotherwayof encapsulatingasubprogramunit.

m

We will illustrate the concept of interface slicing first by examining a simple example, a toggle

ADT. First consider package togglel, in Figure 3. This package exports the public operations

on, off, set, and reset. On and off are examination operations which query the state of the

toggle, while set and reset are operations which modify the state of the toggle. Now suppose

that we wish to have a toggle in a program which we are writing, but we have a need for only three

of the four operations, namely on, set, and reset. In standard Ada, we have two choices. We

can include the package as is, and have the wasted space of the off operation included in our pro-

gram. This is the kitchen sink syndrome. Alternatively, we can edit the source code manually (as-

suming we have access to it) and remove the o f f operation, thereby saving space, but requiting a

large amount of code comprehension and introducing the danger of bugs due to hidden linkages

and dependencies. In both these cases, we see the generality of design-for-reuse competing with

the desired specificity of design-with-reuse.

Instead, we propose the invocation of an interface slicing tool to which we give the toggle 1

package together with the list of operations we wish to include in our program. The tool then au-

tomatically slices the entire package based on the call graph of its operations, generating a slice

containing only those operations (and local variables) needed for our desired operations. The slice

of togglel which contains only the three operations is shown in Figure 4.

* In other words, an interface slice is orthogonal to a standard static slice. The use of one

technique neither requires nor inhibits the use of the other. We are not discussing the tech-

nique of standard static slicing here, other than to contrast it with our interface slice, and so

we do not assume that an interprocedural slicer is operating at the same time as our interface
slicer.

Balancing Generality and Specificity 9 4/'30/92

1 package togglel is

3 function on return boolean;

4
5 function off return boolean;

6

7 procedure set;
8

9 procedure reset;
i0

ii end togglel;
12

13 package body togglel is
14

15 theValue : boolean := FALSE;

16

17 function on return boolean is

18 begin
19 return theValue = TRUE;

20 end on;
21

22 function off return boolean is

23 begin
24 return theValue = FALSE;

25 end off;
26

27 procedure set is

28 begin

29 theValue := TRUE;

30 end set;
31

32 procedure reset is

33 begin
34 theValue := FALSE;

35 end reset;
36

37 end togglel;

Figure 3: A toggle package

As another example, consider the package toggle2, which in addition to the operations of

togglel includes the operation swap. This package is shown in Figure 5. Suppose we wish to write

a program which needs a toggleADT and theoperationson and swap. The interfaceslicingtool

findsthatthe operationon has no dependencies,but theoperationswap needs on, set, and re-

set, and so thedesiredsliceoftoggle2which isproduced forour program iscontainsthefour

operations,on, set, reset, and swap, and does notcontaino ff.This sliceisshown inFigure6.

One of the differences between interface slices and standard slices is the way that interface slic-

es are defined. While a standard slice is defined by a slicing criterion consisting of a program, a

statement and a set of variables, an interface slice is defined by a package and a set of operations

w

W

W

W

W

N

w

m
i

m
n
m
i

m

m

m

m

m

Balancing Generality and Specificity 10 4/30/92 m

1
2

3

4

5

6

7

8

9

i0.

ii

12

13

14

15

16

17

18

19

20

21

22

23

24
25

26

27
28

29

3O

package togglel is

function on return

procedure set;

procedure reset;

end togglel;

package body togglel is

end

boolean;

theValue : boolean := FALSE;

function on return boolean is

begin
return theValue = TRUE;

end on;

procedure set is

begin
theValue := TRUE;

end set;

procedure reset is

begin

theValue := FALSE;

end reset;

togglel;

Figure 4: The toggle package sliced by on, set and reset

w

=

in its interface. The package is an example of design-for-reuse and implements a full ADT, com-

plete with every operation needed to legally set and query all possible states of the ADT. The in-

terface slicer is an aid to design-with-reuse and prunes the full ADT down to the minimal set of

operations necessary to the task at hand. The interface slicer does not add functionality to the ADT,

as the ADT contains full functionality to start with. Rather, the slicer eliminates unneeded func-

tionality, resulting in a smaller, less complex source file for both compiler and reuser to deal with,

and smaller object files following compilation.

6 - An Extended Example

The examples above illustrate the general concept of interface slicing, but leave out some im-

portant details. To fill in some of these details, we will next examine a pair of generic packages in

the public domain. These packages were explicitly written to be used as building blocks for Ada

Balancing Generality and Specificity 11 4/30/92

1 package toggle2 is
2
3 function on return boolean;

4

5 function off return boolean;

6

7 procedure set;
8
9 procedure reset;
i0

ii procedure swap;
12

13 end toggle2;
14

15 package body toggle2 is
16

17 theValue : boolean := FALSE;

18

19 function on return boolean is

20 begin
21 return theValue = TRUE;

22 end on;

23
24 function off return boolean is

25 begin
26 return theValue = FALSE;

27 end off;
28
29 procedure set is

30 begin
31 theValue := TRUE;

32 end set;

33

34 procedure reset is

35 begin
36 theValue := FALSE;

37 end reset;

38

39 procedureswap is

40 begin
41 if on then

42 reset;
43 else

44 set;

45 end if;

46 end swap;
47

48 end toggle2;

Figure 5: Version 2 of the toggle package

programs. The first is a generic package which provides the ADT set. The package is instantiated

by supplying it with two parameters, the first being the type of element which the set is to contain,

and the second a comparison function to determine the equality of two members of this type. The

package provides all the operations necessary to create, manipulate, query, and destroy sets. The

full interface specificatio n of the set is given in Appendix A.

w

W

==

IIw

L _

W

m

wl'

w

W

l

m
W

I

W

m

m

IAI

LI
m

I

W

w

w

m
m

V

Balancing Generality and Specificity 12 4/30/92 II

w

"T_jt o

m

1 package toggle2 is
2
3 function on return boolean;

4

5 procedure swap;
6

7 end toggle2;
8

9 package body toggle2 is
i0

ii theValue : boolean := FALSE;

12
13 function on return boolean is

14 begin
15 return theValue = TRUE;

16 end on;
17

18 procedure set is

19 begin

20 theValue := TRUE;

21 end set;

22

23 procedure reset is

24 begin
25 theValue := FALSE;

26 end reset;
27

28 procedure swap is

29 begin
30 if on then

31 reset;
32 else

33 set;

34 end if;

35 end swap;
36

37 end toggle2;

Figure 6: Version 2 of toggle sliced by on and swap

This set package happens to use a list as the underlying representation upon which it builds the

set ADT, and so requires the second generic package which supplies the list ADT. This happens to

be a singly-linked list implementation which exports all the operations necessary to create, manip-

ulate, query, and destroy lists. This package also requires two generic parameters, the same ones

which set requires. The specification for the list package is given in Appendix B.

In the particular list and set packages we used for our example, there were no private opera-

tions. Private operations are not available to be used in an interface slicing criterion; only the ex-

ported operations in the interface can be in the slicing criterion. In general, however, private

operations are treated identically to exported ones during the slicing process. The slicer, being a

Balancing Generality and Specificity 13 4/30/92

Figure 7: The call graph for set

Figure 8: The sliced set

privileged pre-compilation code transformer, does not respect privacy.

w

IlW

IP

LS

p

6.1 - A Single Level of Slicing

Now suppose we wish to use the set package in a program we are writing, but we have a need

for only a few of the set operations, specifically, in this example, create, insert, and equal. We

would like to include all the code necessary to accomplish these operations, but would like to have

only the necessary code, and no more.

In order to slice the set package, we must examine the call graph of operations in the set pack-

age for the transitive closure of the three desired operations. Figure 7 shows the complete call graph

of the set package, and figure 8, shows the transitive closure of create, insert, and equal (nodes s2,

s4 and s8, respectively).* Figure 8 shows the slice corresponding to these three operations. Out of

the total of 14 operations exported by the original package, the slice based on create, insert, and

equal contains only 8 operations, with a considerable reduction in total size of code, although the

complexity of the call graph remains the samel

!

J

m
!

pc

n
W

Notice that in this example, the sliced set package needs the same number and type of generic

parameters as did the original package. This will not always be the case, however. In Figure 1, the

* The call graph node labels correspond to the comments associated with each operation for
the package specifications appearing in the :appendices. =:

W

II
Ul

Balancing Generality and S_ificity 14 4/30/92

Figure 9: The combined set and list call graph

original wc procedure needed 4 parameters, but the slice based on nc shown in Figure 2 needed

only 2 parameters. In general, out of all the local variables in a component, including both variables

bound to parameters and those declared within the component's scope, a slice will include a subset

of these local variables.

6.2 - A Second Level of Slicing

L .

m

While the 8 operations represent an improvement over the original 14, we can go further, and

examine not only the set package, but also the list package as well. If we examine the transitive

closure of the three desired operations in the call graph of all the operations of both the set and list

packages, we can accomplish a much more dramatic improvement in the size and complexity of

the resulting slice. Figure 9 shows the full call graph of the set and list packages. In standard Ada

usage, all of this would be included in a program were the generic set and list packages instantiated

in a program. Figure 10 shows the call graph which is exactly the transitive closure of the set op-

erations create, insert, and equal, as would be produced by interface slicing. The size and complex-

ity of this call graph are obviously much less than that of the full graph. Table 1 gives some

statistics on the relative sizes of the packages and their call graphs.

m

None of the examples above involved overloaded names. Interface slicing in the presence of

overloading is somewhat more complicated. Assuming that the resolution can be accomplished

Balancing Generality and Specificity 15 4/30D2

i
Figure 10: The sliced set and list

Table 1: Package Statistics

of

of nodes # of edges statements

Full Set 14 5 95

Sliced Set 8 5 57

% reduction 36 0 40

Full Set and List 37 46 345

Sliced Set and list 20 19 200

% reduction 46 59 42

completely at compile time, there are two options. The first is a simple, naive approach in which

all versions of an overloaded operation are included. The second is to perform the type checking

for parameters and return value (if any) to determine which of the overloaded versions are actually

cailexil For example, assume that list's 0perafion attach is a quadrupiy overloadedprocedure which

can be called with two elements, an element and a list, a list and an element, or two lists. Resolution

of the-0verlo-- a_ngmayl _ a parficuiarsi_afi0n, allow three of the four procedures to be sliced

away, resulting in improved reduction of size and complexity.

If the overloading cannot be resolved at compile time, but must wait until runtime, we have no

option but to include the code for all possible operations which may be called. A static slice can

onlyb-findly assumew0rsi_caSe in the presence of run'time bindingof 0Verioadedproceture: ::

w

w

IllW

IlW

IIW

m
W

W

W

J

m

I

z

Wlw

B

J

l

g

m

I
g

Balancing Generality and Specificity 16 4/30192

W

m

names. Although our example extends to only two levels, the slicing can extend to as many levels

as exist in the compilation dependency graph of the packages included in the program.

7- Conclusion: Balancing Genericity and Specificity

We have discussed two main reuse-oriented paradigms in software engineering, namely de-

sign-for-reuse and design-with-reuse, and how the goals of these two paradigms have in the past

been viewed as being antagonistic, with the former striving for generality and the latter striving for

specificity. We have shown that with the proper language mechanisms and development tech-

niques, the goals are in fact complementary. The specific mechanism we use by way of example is

a new form of static program slicing which we call interface slicing. Using interface slicing, a com-

plete and generic component can be adapted to the specific needs of the program at hand, increas-

ing comprehension and reducing complexity, without sacrificing the generality of the base

component. Thus a developer designing a component for reuse can be completely unfettered of all

size constraints and strive for total generality, knowing that a reuser of the components can effort-

lessly have all unneeded functionality sliced away in a pre-compilation step.

The artifacts produced by an interface slicer should not be considered as new components, any

more than instantiations of a generic are viewed as new components. Rather, we want to emphasize

the retention of the derivation specification, avoiding additional maintenance problems though the

life-cycle of what would then be custom components. We should keep the desired interface speci-

fication, and alter that when we need to change the way in which we bind through the interface to

the base component. Just as we don't associate any cost per se with the instantiation of a generic,

we should not associate a cost with specialization through interface slicing, since it can be com-

pletely handled by the development environment.

Our approach addresses indirectly a critical social aspect of reuse, the trust that reusers place

in the components extracted from the repository [16]. Deriving a family of interface slices from a

Balancing Generality and Specificity 17 4/30/92

base component implies that if the base component is correct (or at least certified), then all of the

slices must necessarily be correct (or at least certified) also.

w

w

H

w

==

m

m
t

l

m

W

w

w

m

W

Balancing Generality and Specificity 18 4/30/92

s

References

2

3

4

H. Agrawal and J. Horgan, Dynamic Program Slicing, Technical Report SERC-TR-56-P,

Software Engineering Research Center, Purdue University, West Lafayette, Indiana, Decem-

ber 1989.

H. Agrawal, R. DeMillo, and E. Spafford, Efficient Debugging with Slicing and Backtrack-

ing, Technical Report SERC-TR-80-P, Software Engineering Research Center, Purdue Uni-

versity West Layfayette, Indiana, October 1990.

V. R. Basili, G. Caldiera, and G. Cantone, "A Reference Architecture for the Component Fac-

tory," A CM Transactions on Software Engi_ering and Methodology, 1 (1), January 1992, p.

53-80.

D. Batory, "On the Differences Between Very Large Scale Reuse and Large Scale Reuse,"

Proc. 4th Annual Workshop on Software Reuse, Reston VA, November 18-22 1991.

5 W. Baxter and H. R. Bauer, "The Program Dependence Graph and Vectorization," Proc.

Principles of Programming Languages: 16th Annual ACM Symposium, Austin, TX, January

11-13, 1989, p. 1-11.

6 L. CardeUi and P. Wegner,"On Understanding Types, Data Abstraction, and Polymorphism,"

ACM Computing Surveys, 17(4), December 1985, p. 471-522.

9

10

11

S. H. Edwards, An Approach for Constructing Reusable Software Components in Ada, IDA

Paper P-2378, Institute for Defense Analyses, Alexandria VA, Sept. 1990.

D. Eichmann, "A Repository Architecture Supporting Both Intra-Organizational and Inter-

Organizational Reuse," to be submitted.

K. B. Gallagher and J. R. Lyle, "Using Program Slicing in Software Maintenance," IEEE

Transactions on Software Engineering, 17(8), August 1991, p. 751-761.

E. S. Garnett and J. A. Mariani, "Software Reclamation," Software Engineering Journal,

(5)3, May 1990, p. 185-191.

A. Goldberg and D. Robson, Smalltalk-80: The Language and Its Implementation, Addison-

Wesley, 1983.

19 4/30/92Balancing Generality and Specificity

12

13

14

S.Horwitz, J.Prins,andT. Reps,"IntegratingNon-interferingVersionsof Programs,"Proc.

Fifteenth Annual ACM Symposium on Principles of Programming Languages, New York,

January 13-15, 1988, p. 133-145.

S. Horwitz, T. Reps, and D. Binkley, "Interprocedural Slicing Using Dependence Graphs,"

ACM Transactions on Programming Languages and Systems, (12)1, p. 26-60, January 1990.

K. E. Huff, R. Thomson, and J. W. Gish, "The Role of Understanding and Adaptation in Soft-

ware Reuse Scenarios," Proc. 4th Annual Workshop on Software Reuse, Reston VA, Novem-

ber 18-22 1991.

15 R.E. Johnson and B. Foote, "Designing Reusable Classes," Journal of Object-Oriented Pro-

gramming, 1(2), June/July 1988, p. 22-35. Also appears in [22].

16 J.C. Knight, "Issues in the Certification of Reusable Parts," Proc. 4th Annual Workshop on

Software Reuse, Reston VA, November 18-22 1991.

17 B. Korel and J. Laski, "Dynamic program slicing," Information Processing Letters, (29)3, p.

155-163, October 1988.

18 A. Lakhotia, Graph Theoretic Foundations of Program Slicing and lntegration, Technical

Report CACS-TR-91-5-5, Center for Advanced Computer Studies, University of Southwest-

em Louisiana Lafayette, LA, December 2, 1991.

19 H. Li and J. van Katwijk, "A Model to Reuse-in-the-Large," Proc. 4th Annual Workshop on

Software Reuse, Reston VA, November 18-22 1991.

20 J.R. Lyle and K. B. Gallagher, "A Program Decomposition Scheme with Applications to

Software Modification and Testing," Proceedings of the 22nd Hawaii International Confer-

ence on System Sciences, vol. 2, January 1989, p. 479-485.

21

22

23

R. Prieto-Dfaz, "Domain Analysis for Reusability," Proceedings of COMPSAC '87, p. 24-29.

Also appears in [22].

R. Pfieto-Dfaz and G. Arango, Domain Analysis and Software Systems Modeling, IEEE Com-

puter Society Press, 1991.

R'. K. Raj and H. M. _vy, "A Compositional Model for Software Reuse," The Computer

Journal, (32)4, 1989, p. 312-322.

w

J

mw

T,E_

toNI

J

m
J

w

11

i
W

m

u

Balancing Generality and Specificity 20 4/30/92

w

24

25

26

27

A. Snyder, "Encapsulation and Inheritance in Object-Oriented Programming Languages,"

Proc. OOPSLA'86, Pordand OR, September 29 - October 2 1986, p. 38-45.

I. Sommerville, Software Reuse, ISF Study Paper ISF/ULAVP/IS-3.1, University of Lancast-

er, UK, January 1988.

W. Tracz, "Software Reuse: Motivators and lnhibitors," Proc. of COMPCON '87, 1987, p.

358-363.

W. Tracz, "Software Reuse Myths," ACM SIGSOFT Software Engineering Notes, (13) 1, Jan-

uary 1988, p. 17-21.

28 W. Tracz, "Parameterization: A Case Study," Ada Letters, (IX)4, May/June 1989, p. 92-102.

29 B.W. Weide, W. F. Odgen, and S. H. Zweben,"Reusable Software Components," in Advanc-

es in Computers, v. 33, M. C. Yovits (ed.), Academic Press, 1991, p. 1-65.

30 M. Weiser, Program Slicing: Formal, Psychological and Practical Investigations of an Auto-

matic Program Abstraction Method, PhD Thesis, University of Michigan, Ann Arbor, Mich-

igan, 1979

31

32

33

M. Weiser, "Program slicing," Proceedings of 5th International Conference on Software En-

gineering, p. 439-449, May 1981.

M. Weiser, "Programmers use slicing when debugging," Communications of the ACM, 25(7),

July 1982, p. 446-452.

M. Weiser, "Program Slicing," IEEE Transactions on Software Engineering, SE- 10, July

1984, p. 352-357.

Balancing Generality and Specificity 21 4/30/92

Appendix A - The Package Specification for Set

Note: the comments in the right margin refer to the node labels in the call graphs of Figures 7,

8, 9, and 10.

1 generic

2 type elemType is private;
3 with function equal(el, e2: eiemType) return boolean is x=.;

4 package setPkg is

5

6 type set is private;

7 type iterator is private;

8

9 noMore: exception; -- sl

i0
ii function create return set; -- s2

12

13 procedure delete(s: in out set; e: in elemType); -- s3

14

15 procedure insert(s: in out set; e: in elemType); -- s4
16
17 function intersection(sl, s2: set) return set; -- s5

18
19 function union(sl, s2: set) return set; -- s6

20

21 function copy(s: set) return set; -- s7

22

23 function equal(sl, s2: set) return boolean; -- s8
24

25 function isEmpty(s: set) return boolean; -- s9

26 -
27 function isMember(s: set; e: elemType) return boolean; -- sl0

28

29 function size(s: set) return natural; -- sll

3O
31 function makeiterator(s: set) return iterator; -- s12

32

33 procedure next(iter: in out iterator; e: out elemType); -- s13

34
35 function more(iter: iterator) return boolean; -- s14

36

37 end setPkg;

wmm

w

m

U

W

w

i

w

W

m

w

I

Balancing Generality and Specificity 22
4/30/92

Appendix B - The Package Specification for List

=_

Note: the comments in the right margin refer to the node labels in the call graphs of Figures 9

and 10.

1 generic

2 type elemType is private;
3 with function equal(el, e2: elemType) return boolean is "=";

4 package listPkg is
5

6

7

8

9

i0

ii

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32
33

34

35

36

37

38

39
4O

41

42

43

44
45

46

47

48
49

50
51

52 end listPkg;

type list is private;

type iterator is private;

circularList: exception;

emptyList: exception;

itemNotPresent: exception;

noMore: exception;

procedure attach(ll: in out list; 12 in list);

function copy(l: list) return list;

function create return list;

procedure deleteHead(l: in out list);

procedure deleteItem(l: in out list; e: in itemType);

procedure deleteItems(l: in out list; e: in itemType);

function equal(ll, 12: list) return boolean;

function firstValue(l: list) return itemType;

function isInList(l: list; e: itemType) return boolean;

function isEmpty(l: list) return boolean;

function lastValue(l: list) return itemType;

function length(l: list) return integer;

function makeIterator(l: list) return iterator;

function more(l: iterator) return boolean;

procedure next(iter: in out iterator; e: itemType);

procedure replaceHead(l: in out list; e: itemType);

procedure replaceTail(l: in out list; newTail: in list);

function tail(l: list) return list;

function last(l: list) return list;

-- ii

-- 12

-- 13

-- 14

-- 15

-- 16

-- 17

-- 18

-- 19

-- ii0

-- iii

-- 112

-- 113

-- 114

-- 115

-- 116

-- 117

-- 118

-- 119

-- 120

-- 121

-- 122

-- 123

Balancing Generality and Specificity 23 4/30/92

w

U

lul

M
IB

i_u

u

N

g

g

1HI

Ill

Im

uM

Ii

E

g

mm

m
wm

W _

g

U

U

IB

